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Abstract: Users’ acceptance is one of the predominant barriers of connected and automated vehicles (CAVS), which 
should be addressed at the highest priority. Loss of control, perceived safety and therefore lack of trust are 
some of the main aspects that lead to scepticism about the adoption of this technology. Addressing this issue, 
the H2020 project SUaaVE seeks to enhance the acceptance of CAVS through understanding the passengers’ 
state and managing corrective actions in vehicle for enhancing trip experience. The research to understand 
passenger emotions is mainly based on experimental tests consisting in immersive experiences with subject’s 
participation in a simulated CAV, specifically adapted to SUaaVE research purposes. This paper present 
different strategies to obtain realistic simulations with high levels of immensity in these tests using a dynamic 
platform with the objective of studying the emotional reaction of the subjects in representative scenarios and 
events within the framework of CAVs. 

1 INTRODUCTION 

The automation of driving is changing the role of 
humans so that SAE levels L4 and L5 of automated 
vehicles (SAE International, 2021) will take over all 
control and monitoring tasks for specific applications 
performed by humans in conventional motor vehicles 
(Drewitz et al., 2020). However, the lack of control 
can lead to lack of trust among users of fully 
automated vehicles (Lee & See, 2004), identified as a 
key issue in the acceptance and adoption of this 
emerging technology (Bazilinskyy et al., 2015). In 
this regard, trust in automation is strictly related to 
”emotions on human-technology interaction, which is 
a key factor for acceptance, but is also important for 
safety and performance” (Lee & See, 2004). For this 
reason, it should be a factor considered when 
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designing complex, high-consequenced systems like 
Connected Automated Vehicles (CAVs) (Paddeu et 
al., 2020). 

With this situation, H2020 SUaaVE project 
(SUpporting acceptance of automated VEhicle), aims 
to enhance the acceptance of CAVs through the 
formulation of ALFRED: A human centred artificial 
intelligence to humanize the vehicle actions of the 
CAV by understanding the passengers’ state and 
managing corrective actions in vehicle for optimizing 
trip experience. One of the main challenges in 
SUaaVE, and in line with recent studies regarding 
empathic vehicles (Braun et al., 2020), is the emotion 
recognition of the vehicle occupants. It is also 
important to consider mental stress in the 
identification of these emotions in perception and 
cognition in drivers above all due to the possible 
affection of burn-out syndromes (Cuzzocrea et al., 



2013). The measurement of these emotions is based 
on the obtention of arousal (level of intensity) and 
valence (level of pleasantness). These values can be 
estimated from physiological signals: 
Electrocardiogram (ECG), heart rate (HR), galvanic 
skin response (GSR), skin temperature (T) and facial 
electromyogram (EMG) from the corrugator and 
zygomatic muscles (Shu et al., 2018). Other 
approaches could also include additional behavioral 
parameters (facial expression according to 
landmarks, blinking, etc.) (Suja et al., 2014). 

In order to understand the passenger emotions, the 
research is mainly based on experimental tests 
consisting in immersive experiences with subject’s 
participation in a simulated CAV, specifically 
adapted to SUaaVE research purposes. This enables 
to monitor the subjects’ reactions in different 
situations and contexts within the framework of 
automated vehicles. 

This paper describes the experimental design for 
the first test of the project in a driving simulator. The 
aim is to provide and immersive experience to the 
participants with the objective of eliciting relevant 
and characteristic emotions in the framework of 
automated vehicles while gathering their 
physiological reaction. 

2 METHODS 

2.1 Experimental Design 

The main objective of the experimental tests was to 
analyse the subject’s response to different on-board 
situations and circumstances on an automated 
vehicle.  

According to that purpose, we defined a set of 
scenarios required to validate the emotional model. 
These scenarios were designed to elicit the most 
representative emotions that passengers can feel in 
the framework of automated vehicles, thus can be 
represented by different values of arousal and 
valence. These emotions are: Fear, hope, pity, 
satisfaction, distress, anger, relief and joy. The 
elaboration of these relevant and critical scenarios 
was defined in a previous study within SUaaVE using 
people-oriented innovation techniques and with the 
participation of 592 subjects from different EU 
countries by means of online qualitative research 
tools and surveys (Belda et al., 2021). 

A total of seven scenarios were generated through 
an open-source simulator for autonomous driving 
research (CARLA) with a duration between 3 and 5 
minutes. The first scenario is a manual driving. The 
purpose of this one was to get to know the dynamics 
of the platform, the simulated dimensions of the car, 

visual perspective, sounds and in general to get 
familiarized to the simulation environment. Five 
more scenarios were designed in order to simulate full 
automated driving (L5), whereas one more scenario 
simulates automated driving (L4+) with a car failure, 
requiring to take over the vehicle (manual driving due 
to an electronic failure in the vehicle). Within this 
scenario, several options can be taken. For example, 
before a highway exit during autonomous mode from 
vehicle, the participant is requested to take over the 
car to drive inside an urban area. In case the 
participant does not take over, the vehicle stops safely 
after the new lane entrance. In Figure 1, a screenshot 
of one of these scenarios is depicted. 

 

Figure 1: Example screenshots of some scenarios used in 
the test. 

The experimental session has been designed in 
order not to exceed the duration of two hours. 

2.2 Immersion Methods for 
Participants 

The tests were performed in The Human Autonomous 
Vehicle (HAV) at IBV, shown in Figure 2, a complete 
dynamic driving simulator (six degrees of freedom) 
that allows to emulate the behaviour of a vehicle with 
different degrees of autonomy enabling fully 
immersive driving experience.  

It is composed by 3 large screens to facilitate the 
immersion and includes steering wheel and pedals for 
simulating low levels of automation. The simulator 
provides surrounding sounds to the participants 
representing engine sounds (emulating the sound of 
an electric car), the road and other cars passing by. 
HAV includes an instrument panel that provides 
complete information of the vehicle to the participant, 
including speed, regenerative braking, battery level, 
information trip (expected time of arrival) and 
information failure. Both trip and failure information 
are also notified redundantly through audio messages. 



 

Figure 2: Example of HAV simulating the behaviour of an 
autonomous vehicle in a highway. 

In order to adjust and validate the procedure 
protocol for the test, a pre-pilot test with 6 
participants was conducted. Participants were internal 
IBV staff and also external participants (to avoid 
potential bias in their results). According to the 
preliminary results obtained, we designed and 
implemented an extra set of strategies to optimize the 
user experience enhancing the realism to improve the 
participants’ attention during the test. These strategies 
are defined next: 

 Initial context: Imagination is one of the simplest 
emotion induction techniques, so in the 
beginning of each scenario, we needed the 
participants to imagine situations that elicit 
emotions. At first, the technician in charge of the 
tests informed the participants that they were in 
a hurry to reach the destination. We noticed that 
films, more than any other art forms, have a way 
of drawing viewers into a situation that helps 
people empathize and identify themselves with 
characters. After that, we recorded videos with 
professional actors reading a script that later 
were played before the scenario. With emotions 
and personality expressions hidden in the voice 
of the actor and a detailed storytelling we can 
elicit an initial cognitive load in the participant. 
Thus there are more examples in literature in 
which the formulation of methods to augment the 
construction of predictive models with domain 
knowledge can provide support for producing 
understandable explanations for prediction, as it 
is one of the future objectives of this 
experimentation (Holzinger & Kieseberg, 2020). 

 Feedback during scenario: In each scenario, 
visual and audible information was provided 
through a Human-Machine Interface (HMI) in 
the HAV central console and audio messages 

were played as if it was an AI virtual assistant, 
providing time to destination, vehicle status and 
other trip information. A screenshot of the HMI 
is shown in Figure 3. 

 This information lets the participant know the 
driving mode (sportive, eco, etc.) weather 
conditions that could affect the vehicle’s 
roadmap (like cloudy, rainy or windy), status of 
traffic (like good fluency or jams in several 
locations on the way) and more pills that could 
affect the emotional state of the passenger of an 
autonomous vehicle circulating in both urban and 
intercity trips. Results of a metanalysis on 32 
studies with a total of 2468 participants showed 
that the success-failure manipulation through 
real time feedback is a reliable induction 
technique to evoke both positive and negative 
affective reactions (Nummenmaa & Niemi, 
2004). 

 

Figure 3: Detail of the HMI. 

 Embodiment: It can be a powerful tool to elicit 
cognitive emotion to participants. For instance, 
in one of the designed scenarios we force 
postural change in order to catch a smartphone 
ringing with a call that asks you to finish a certain 
office task (while making eye contact with the 
simulated road). This obliges the user to take a 
similar attitude than when there is a stressful 
situation at work. 

In order to gather the subjective assessment of the 
subjects, after each scenario, the participants reported 
the emotions felt regarding every specific event of the 
journey conducted in the scenarios through the scales 
of Arousal and Valence from the Self-Assessment 
Manikin (SAM) (Bradley & Lang, 1994). The value 
of valence in a scale from 1 to 9 refers to the negative 
or positiveness of the emotion felt. In the same way, 
arousal refers to the intensity of the emotion in terms 
of calmness or excitation, as seen in Figure 4. A 
number of 30 events were evaluated including all 
scenarios.  



 

Figure 4: SAM questionnaire. 

2.3 Participants 

A total of 50 volunteers integrated the subject sample 
in the test. This sample is composed of car drivers 
between 25 and 55 years old, aged and BMI balanced. 
The sample has an equal distribution of males and 
females.  

Exclusion conditions regarding the requirements 
of the participants were simple. They do not have to 
suffer visual & hearing impairment (wearing glasses 
was allowed) and generally not suffering motion 
sickness in transport. Thus, they had to come without 
drowsiness, alcohol or drug issues in previous hours. 

The participants’ physiological signals were 
continuously monitored and synchronized with the 
simulator. The synchronization is needed to associate 
the scenario events with the onset of the participants’ 
emotional reactions. 

The test was approved by the Ethical Committee 
of the Polytechnic University of Valencia (UPV). 

2.4 Acquisition instrumentation 

We used different equipment to gather biosignals and 
behaviour of the participants during the test. The 
equipment used to gather the biometrics, 
physiological data acquisition, were: 

 Biosignalsplux©. This equipment, shown at left 
in Figure 5, allows high-quality physiological 
signals acquisition by placing electrodes over 
the skin with a high-resolution sample 
frequency. This device gives accurate 
measurements and it is very flexible for 
synchronizing with other devices, like, for 
instance, the software of the driving simulators.  

 Empatica E4© wristband (see right part in Figure 
5). A non-invasive equipment and the only 
wearable on the market to combine 
Electrodermal Activity (EDA) 
Photoplethysmography (PPG) and Temperature 
sensors, simultaneously enabling the 
measurement of the duality between sympathetic 
vs parasympathetic nervous system activity. 

  

Figure 5: Left: biosignalsplux©. Right: Empatica E4© 
wristband. 

The aim of measuring with both equipment is to 
have a more complete overview of physiological 
changes as a result of the fight between sympathetic 
and parasympathetic systems. On one hand, the 
Biosignals Plux allows a deeper analysis of the 
physiological reactions in a more accurate way. On 
the other hand, Empatica E4 allows to measure the 
signals in a much less invasive way, so it could be 
used in latter stages of tests (being easier to wear by 
the test subjects) once the signals are better 
characterized. 

In general, the signals collected through these 
sensors are involuntary and subconscious, and then, 
they are hardly falsifying, so they can be used to 
assess emotional states in a continuous way and they 
are non-disruptive to the performance of the task. 
Through different processing and analysis we could 
obtain comparable outputs among them. The 
information about the physiological signals acquired 
is described in the following section. 

Regarding the study of the participant’s physical 
behaviour, a camera was placed in front of the driving 
simulator to gather the facial gestures and understand 
the participant’s reactions. There are several 
software-based tools in the market able for analysing 
facial expression such as the Affectiva Affdex 
emotion recognition by iMotions© or Rekognition 
service by Amazon Web Services©. These software 
toolboxes detect changes in key face features (i.e., 
facial landmarks such as brows, eyes, and lips) and 
generates data representing the basic emotions of the 
recorded face. A photo of this sensor in the HAV and 
the image acquired is depicted in Figure 6. More 
information about the parameters calculated is 
described in the following section. 

This experimental data (physiological signals, 
SAM questionnaires, labels with emotion type, 
arousal, valence and facial videos) are the input to 
generate the emotional model.  



  

Figure 6: Left: camera placed in the driving simulator. 
Right: Example of facial landmarks of Affectiva. 

2.5 Data Gathered 

The set of physiological signals acquired and 
visualized in real time for each participant during the 
whole test are detailed next: 

 Electrocardiogram (ECG) sensor (in case of 
biosignalplux) and Blood Volume Pulse (BVP) 
sensor (in case of Empatica) to obtain the heart 
rate (HR) and heart rate variability (HRV). 

 Skin conductance sensor to record the electro 
dermal activity (EDA). 

 Two facial electromyography (EMG) sensors to 
record recruitment activity of zygomaticus 
major and corrugator supercilia muscles. 

 Infrared thermopile sensor to gather the 
peripheral skin temperature (only available in 
Empatica E4© wristband). 

Regarding behavioural data, we are able to 
calculate the following parameters using facial 
landmarks analysis: 

 Basic emotions: Calmness, Joy, Anger, 
Surprise, Fear, Sadness, Disgust and Contempt; 
with probability scores on a 0-100% scale. 

 Valence (measure of how positive or negative 
the expression is). 

 Engagement: A general measure of overall 
engagement or expressiveness. 

 Attention. Measure of point of focus of the 
subject based on the head position. 

 Interocular Distance: the distance between the 
two outer eye corners. 

 Pitch, Yaw, & Roll: x, y, & z rotation of the 
head. 

The physiological signals and the videos are 
synchronized with the time of each scenario using 
UNIX timestamps. 

Besides objective measures, as mentioned before, 
the subjective opinion of participants was also 
collected.. It was gathered through: 

 Socio-demographic profile form: Age, gender, 
driving experience and preferences.  

 SAM questionnaire (Geethanjali et al., 2017). 
Appraisal of the emotional state of the 
participant (level of arousal and valence) with 
regards to different events on road. 

 Survey to assess acceptability and acceptance 
from the perspective of automated vehicles and 
developed in SUaaVE by the University of 
Groningen (Post et al., 2020). 

Since each physiological signal has its own 
representation, all of them requires to be set in the 
same proper scale. As we aim at having a continuous 
representation of the emotional state of the 
participants (in the domain of valence and arousal), 
physiological signals are calibrated with a self-
reported emotional status at some specific times.  

3 RESULTS 

A preliminary analysis confirmed the hypothesis of 
providing a higher immersive user experience with 
the strategies aforementioned. This was observed by 
the comparison of the physiological signals of the 
participants performing the test with the strategies 
and without them (in the pre-pilot test). More 
concretely, it was noticed a more variable interval 
within heart and breathing rate and a higher quantity 
of responses generated by the sympathetic nervous 
system (shown by the number of peaks detected in the 
electrodermal activity signal of participants) in the 
test with the strategies. 

The emotional reactions and their variation are 
also seen in the subjective assessment indicated by 
the subjects after the end of each scenario through 
SAM questionnaire. Figure 7 and Figure 8 show an 
example of the mean values of arousal and valence 
reported in two selected scenarios in the test with 
strategies. As it can be seen, there are different events 
in the scenarios where the interval relative to the 
range in Arousal and Valence is higher than 2.5 points 
in the scale, confirming the variation in the emotion 
felt by the subjects. This means high intensity with 
negative feeling of emotion load. 

Regarding arousal, the mean values reached 7 
points in events where the car gets closer to another 
vehicle circulating at high speeds in the highway (3rd 
event in scenario 2) and 6 points while raining and the 
participant witnesses an accident of other vehicle (3rd 
event in scenario 4). Having in mind the complete 
scale is from 1 to 9, these values in the upper third 
part of intensity of emotion proves a good immersion 
into the scenarios feeling the events with enhanced 
intensity. 



We can observe the same behaviour in valence 
values reported in these events, where the values 
nearly reach 3.5 points in both cases. Furthermore, in 
the final event from scenario 4, participants agree in 
arriving with a low emotional load in terms of arousal 
with a positive feeling in terms of valence (around 7). 

 

Figure 7: Mean SAM results in questionnaires from 
scenario 2 per event. 

 

Figure 8: Mean SAM results in questionnaires from 
scenario 4 per event. 

After a deep analysis of the data, the expected 
result is the database of physiological signals in the 
different autonomous driving situations and their self-
appraisal of the emotion felt. This database is used to 
generate the dimensional emotional model. To this 
purpose, the most appropriate classificatory system is 
selected. These include: Artificial Neural Networks 
(ANN), Convolutional Neural Networks (CNN), 
Recurrent Neural Networks such as the bidirectional 
Long Short Term Memory (BLSTM) or 
Transformers, Support Vector Machines (SVM), 
Relevance Vector Machine (RVM), Linear 
Discriminant Analysis (LDA) and others (Bong et al., 
2013; Jang et al., 2012; Mohamad, 2005; Shu et al., 
2018). 

In these preliminary analyses, the initial results 
also show that the emotions felt varies from events 

according to the scenario and it is also gender 
dependent (variations in sentiment whether the 
participant was a female or a male). However, the 
emotion is independent of the achievement (on time 
or not) of the task of the different scenarios. 

4 DISCUSSION 

SUaaVE seeks to integrate the human component in 
CAVs through understanding the emotional state of 
the occupants. In this regard, the immersion strategies 
defined in this study are a key aspect for studying the 
occupants reactions in a realistic way in a driving 
simulator.  

This study means the first step to generate a model 
so as to characterise drivers and passengers in L4+ 
CAVs from their physiological signals, to study the 
factors that might influence their emotional reactions 
during the trip. In fact, a better estimation of the 
occupants state can be used for the identification, 
together with vehicle sensors (cameras, radar, 
and LiDAR), of those factors that influence their 
emotional state, such as the vehicle dynamics (ride 
comfort), the environmental conditions (traffic 
density, behaviour other vehicles, presence of VRUs, 
etc.), or the interior ambient conditions & design. It 
also enables to consider the human factor in the 
development of advanced driver assistance systems 
(ADAS) as well as to support the artificial 
intelligence of the CAV by adjusting the decision-
making algorithms of vehicles in terms of dynamics 
and itinerary for a comfortable and safe ride. In short, 
understand how we feel in a CAV and use such 
information to make system more empathic, 
responding to the occupant emotions in real time. 

5 CONCLUSIONS 

This paper addresses different strategies to enhance 
the immersivity and engagement of subjects while 
conducting tests in a driving simulator in the 
framework of automated vehicles. 

The results of the test performed with these 
strategies showed that participants felt immerse in the 
simulation and that they could evaluate the events in 
the different scenarios as if they were real, with 
intense emotions noted both in objective and 
subjective feedback obtained from them, as it is the 
physiological signals, which were continuously 
monitored and by questionnaires respectively. 

The following steps in SUaaVE, using as a basis 
the data base obtained from the tests with subjects 
(physiological signals and subjective assessment) is 
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the generation of an emotional model aimed to 
estimate the passengers state from their physiological 
signals. 
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