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Abstract. The emotional relationship users develop with a given tech-
nology has a direct impact on its acceptance. It is around this simple,
though well established premise that the work pursued in SUaaVE (H2020
research project) was structured. Efforts are invested towards placing the
human factor at the center of technological developments, structuring
the onboard intelligence around passengers’ emotions. Several comple-
mentary avenues of investigations are explored, including novel, innova-
tive approaches to real-time emotion estimation, and at-runtime adjust-
ments to the vehicle’s road behavior in light of estimated information.
This system-theoretic and algorithmic work is complemented by devel-
opment of novel HMI technology, and analysis of societal factors driving
acceptance of the considered technology over a representative range of
stakeholder groups across Europe.

Keywords: Connected Automated Vehicles (CAVs), Human-Driven De-
sign (HDD), Cognitive and emotional model, Affective computing.

1 Introduction

Though maturity of driving automation technology has seen major advances in
recent years, its acceptance by the public has remained limited ([1]). For this
technology to achieve its desired impact, societal issues pertaining to public
acceptance, user awareness, and ethical considerations need necessarily be ad-
dressed. Expected benefits of the technology will fail to materialize if it is not
adopted by the target user group ([2, 3]). The literature shows that, though the
⋆ This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No814999.
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public at large is fascinated by Connected and Automated Vehicle (CAV) tech-
nology, 43% of people remain afraid of traveling in an autonomous car ([4]). In
addition, concerns exist in terms of compliance of the technology with expected
ethical standards. The European Group on Ethics (EGE) in science and new
technologies recommends that automation technology should be aligned with
fundamental values adhered to by EU Treaties ([5]). Estimation of the emotional
state of a car’s driver has received attention in the literature, in particular re-
lying on physiological signals ([6]). However, reliably observing the emotions of
autonomous cars’ passengers remains a challenge.

To directly address such issues, the SUpporting acceptance of automated Ve-
hicle project (SUaaVE, Horizon 2020 research project) will explore the relation
between prospective users’ emotional reception of the technology and their ac-
ceptance of it. This will be pursued relying on a Human-Driven Design (HDD)
approach, exploiting synergies between social science, human factors and auto-
motive market research, by means of iterative assessment, co-design, and proto-
typing processes. The approach pursued is inclusive, it will involve users (pas-
sengers, drivers, vulnerable road users), experts, and stakeholders. In addition,
developments pursued within SUaaVE will address ethical considerations related
to safety-critical situations and protection of human life in the development of
CAV technology. The expected outcome is the emergence of a novel automa-
tion paradigm: ALFRED (Automation Level Four and Reliable Empathic Driver),
which will adjust the vehicle’s road behavior in accordance with the observed
emotional state of the passengers and of other actors involved in the scene.
ALFRED will rely on an empathy unit (EMY) to assess the emotional and cog-
nitive state of passengers, while taking social and ethical aspects into account.
In addition, an adaptive cognitive and emotional interface will be established,
including a set of services aimed at enhancing passengers’ experience.

SUaaVE will explore manners in which the emotional and cognitive state of
the passenger may inform the ride of an automated vehicle, to influence their
emotional state positively, with consideration for societal and ethical aspects.
The work conducted aims to contribute to acceptance of CAV technology.

2 The SUaaVE Concept

The central objective of SUaaVE consists in investigating, supporting, and en-
hancing public acceptance of CAVs, at societal and individual level, through the
integration of the human perspective within the technology. To achieve this, ef-
forts invested aim to develop a framework explicitly accounting for the human
factor (i.e. emotion, dynamic and ambient comfort, ethical aspects) within the
vehicle’s intelligence, and in the implemented communication channels between
vehicle and passengers. More specifically, developments are structured along the
following three complementary avenues of investigations (see Figure 1),

01 ALFRED: Automation Level Four + Reliable Empathic Driver
Fundamental architecture developed to robustly assess emotions of the passen-
ger on board (considering the emotional and cognitive state of the passenger,
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and addressing ethical considerations), and adapt the vehicle behaviour and fea-
tures to enhance the user’s experience (through adjustment of the vehicle’s road
behaviour, ambient comfort factors, and adaptive communication).
02 Immersive Virtual Human Centred Design platform (V-HCD)
Development of an immersive CAV simulator, exploited to assess acceptance of
the technology through active involvement of future users.
03 Guidelines for the support of public authorities
Development of policy recommendations to stimulate and promote greater levels
of CAV societal acceptance, with consideration for all road users. These efforts
will facilitate harmonization and alignment of implemented CAV technology
across distinct national and European initiatives.

Fig. 1. Outline of the SUaaVE con-
cept, sketching the path to accep-
tance.

Developments in SUaaVE lean on a
Human-Driven Design (HDD) approach, a
methodology shown to be of special rele-
vance to enabling and emerging information
and communication technologies. The ap-
proach revolves around the notion that the
user is not only the focal point of the process,
but she/he actively contributes, even leads,
the definition of the concept, the technol-
ogy’s development, and actively participates
in testing. Work conducted will focus on the
human factor, directly addressing somewhat
less than tangible aspects such as safety per-
ception and, very generally, the emotional
appraisal of CAVs by stakeholders. Outcome
of the conducted work is aimed at all cur-
rent and future technology users and stake-
holders: CAV passengers, current and future
drivers (with special consideration for children, senior citizens, and people with
disabilities), and Vulnerable Road Users (VRUs). Efforts will be supported by
the active engagement of an Advisory Board featuring public authorities, indus-
try representatives, and a selection of concerned stakeholder associations.

SUaaVE will address different scenarios through the ALFRED concept. An ex-
ample of such a scenario could be the following: ”A girl is taken everyday from
school to her mother’s workplace. In one of the journeys, it rains heavily and
the visibility becomes poor, the girl is negatively affected. ALFRED detects the
change in emotional state through physiological signals, movements, and sound
measures. To improve her state, ALFRED adjusts the drive to her comfort. It of-
fers to call the girl’s mother, and executes upon acceptance. The girl talks with
her mother, she recovers to a normal emotional state.”

3 Robust, Real-Time Emotion Estimation
There exists extensive literature on emotion recognition in speech, facial ex-
pressions, body expressions, and relevant physiological variables, as discussed in
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Fig. 2. The two levels of emotion analysis within SUaaVE. A categoric model is used
to drive the decision making, while a dimensional model is used to convey impact of
variables descriptive of the car’s dynamical behavior.

[7–9]. Meaningful information is contained within physiological signals (such as
e.g. electromyogram, blood pressure, skin conductivity, respiration rate) which
can be gainfully exploited to assess or classify the affective state of a person
([10]). Though a wide range of classifiers rely on facial expressions exclusively,
supplementing such information with complementary modalities is expected to
lead to improved performance. There exists a wide range of models used for
classification of emotions in psychology. The most common types being referred
to as categorical ([11]), dimensional ([12, 13]), and cognitive ([14]).

The emotion estimation work conducted within SUaaVE accounts for two
distinct levels of interaction, as illustrated in Figure 2. The first considered level
is concerned with decision making in relation to aspects of the environment that
affect the emotions of the passenger (external, ambient, contextual stimuli). The
second level is related to aspects of the car’s road behaviour that affect the
emotional state of the vehicle’s passengers.

To address the first considered level, the cognitive appraisal model of emo-
tions is particularly well suited. The approach has the benefit that it emphasises
the relation between emotions and elicitors. The cognitive appraisal model pur-
sued in the project is based on the categorical structure described in [14]. This
model describes a structure of 22 emotions, described in terms of variables re-
lated to events, agents, and objects (originators of the emotions). One of the
main challenges in the construction of this categorical model is to cover a wide
enough variety of scenarios in the framework of the autonomous car. The collec-
tion of a robustly large range of factors is crucial. To that end, a user-centered
elicitor gathering experimentation in two stages was designed. The first stage is
aimed at collecting eliciting situations with questions such as: ”In a journey in
the autonomous car you feel anxious, fear, fright, because of the prospect of a
negative event that may occur during the ride, please imagine one such event.”
We expect the following type of answer: ”Such feelings may be elicited by a traffic
jam, which may cause me to arrive late at work”. A second stage is used to collect
appraisal elicited by immersive experiences in a simulator. These elicitors can
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mostly be gathered from the analysis of the environment. Cross-referencing this
information with that in a database collected in the user-centered compilation,
it becomes possible to predict the emotional response of passengers in relation
to given situations. In addition, a range of sensors will be used to measure the
physiological response (in relevant modalities) and audiovisual information il-
lustrative of passengers’ reactions. The main considered measurements, beyond
audiovisual recordings, are respiratory and heartbeat rates. Both of these may
be measured in an unobtrusive manner, specifically avoiding the use of instru-
ments which may affect (and thus color) arousal and valence of the passenger.
The physiological response will help to select the most likely emotion from the
emotion candidates obtained from the analysis of the environment.

The model will consist of a predictive filter of the following form,

ẋ(t) = f (x(t), u(t)) + ϵ1(t), x(0) = x0, t ⩾ 0, (1)
y(t) = h (x(t)) + ϵ2(t), (2)

where x(t) ∈ Rn represents the state vector (descriptive of the emotional state
of the passenger), y(t) ∈ Rm is the output vector (composed of the considered
physiological measures informative of passengers’ emotional state), u(t) ∈ Rp is
the input vector (descriptive of relevant aspects of the vehicle’s road behaviour,
specifically those which affect emotional response of the subjects).

The second part of the filter captures the relationship between the phys-
iological signals and the components of the emotions which may be directly
controlled by the car’s behaviour, these essentially entail arousal and valence.
The corresponding relationship can be found in the literature ([15]). The struc-
ture of the model may be articulated as follows. A first part reflects dynamics
of the emotional response. A second part is descriptive of the impact, on the
emotional dynamics, of relevant variables characterising the vehicle’s road be-
haviour. These two parts are modelled separately. Accordingly, we re-write (1)
as follows,

ẋ(t) = f1 (x(t)) + f2 (u(t)) , x(0) = x0, t ⩾ 0, (3)

where f1(·) and f2(·) are estimated based on data collected through specific
experiments. To identify f1(·), controlled stimuli are presented to a set of sub-
jects, dynamics of the reaction are measured and used to develop the model. The
experimentation will be performed in a semi-dynamic driving simulator. While
being on board, the user will be exposed to events such as risky manoeuvres
and traffic jams, and be monitored to record changes in their emotional state.
Similarly, f2(·) is estimated by subjecting vehicle passengers to a selection of
stimuli reflecting the possible range of vehicle road behaviors.

4 Beyond Static Classifiers: Dynamic Observers
In Section 3, we have discussed the prospect of exploiting measures of exter-
nal stimuli, relevant to the passenger’s emotions (such as the vehicle’s dynamic
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Fig. 3. Schematic representation of the considered observation problem; the considered
system is descriptive of the subject’s emotional response, its output y(t), t ⩾ 0, is a set
of physiological variables, measures um(t) of relevant stimuli, output measures ym(t),
and the outcome x̂c(t) of a classification procedure (as discussed in Section 3), are used
together to support observation of the system state x(t).

behavior, for instance), together with physiological measures, to estimate and
possibly classify the passenger’s emotional state. The notion of exploiting a dy-
namical model (such as that represented by (1)–(2)) in such a respect is not
particularly widespread in the literature, although one may find a number of
results, such as that in [16], which consider temporal behavior of input data.
In [17], the authors do propose the use of one (simple, linear) such dynamical
system to reflect the dynamical nature of the subjects’ emotional reactions. How-
ever, only a limited number of results exploring this avenue of investigation can
be found. Those that do remain typically limited to rather simple linear forms,
such as that in [17].

Simple notions of cognitive psychology are sufficient to appreciate that our
emotional response typically behaves in a dynamic manner; our emotional state
is a direct function of influencing factors (external stimuli, or system input in a
system-theory formulation, in particular when considering a state-space repre-
sentation as that in (1)–(2), see [18]). It is not a static, instantaneous relationship
however, hence the dynamic label. In addition, availability of a model of this sys-
tem is of special import in the perspective of estimating a person’s emotional
state. If the relationship from emotional state to correlated physiological measure
clearly also is of a dynamic nature, time-scales involved are significantly faster,
such that it is oftentimes treated as a direct, static relationship as described by
(2) (for simplicity). However the time-scale from external stimuli u(t), t ⩾ 0, to
emotional state x(t) is significantly slower, motivating the consideration of the
time differential in (1).

External stimuli (u(t) in Figure 3) playing a significant determining role in
the evolution of our emotions, it stands to reason to account for such factors
when determining a passenger’s emotional state. The relation from stimulus to
state not being direct, but described by a dynamic map of the form of (1),
motivation to develop a model of such a map is straightforward. Such a model
constitutes a tool that allows to gainfully exploit measures of relevant external
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stimuli to inform an emotional state estimate. In addition, there also exists infor-
mation within the form of (1). In particular, specifics of f(·), directly descriptive
of the considered subject’s emotional dynamics, provide information on the man-
ner in which the person may be expected to react to considered stimuli. This
presents a challenge as, if the system model information proves faithful enough
(i.e. proficient in accurately describing the subject’s reactions), the model allows
to appropriately account for the impact of external stimuli. In the opposite even-
tuality however, relying on such a model may not only prevent us from exploiting
measures of relevant stimuli, but actively deteriorate performance when combin-
ing the outcome of this process with output-based estimation (i.e. estimation of
the emotional state based on measured physiological signals).

To exploit measures of external relevant stimuli together with measures of
physiological signals, we construct an observer of the following form,

˙̂x(t) = φ (x̂(t), um(t)) + γ(ey(t), x̂c(t)), x̂(0) = x̂0, t ⩾ 0, (4)
ŷ(t) = χ (x̂(t)) , (5)

where x̂(t) ∈ Rn, t ⩾ 0, is the observed estimate of the subject’s emotional state
x(t), um(t) ∈ Rp represents the vector of measured relevant stimuli, ŷ(t) ∈ Rm is
the predicted output, ey(t) ≜ ym(t)− ŷ(t) corresponds to an output error, ym(t)
is the measured output (vector of physiological measures), x̂c(t) ∈ Rn reflects
the outcome of a classification procedure (as discussed in Section 3), φ(·) is an
estimate of f(·) in (1), χ(·) an estimate of h(·) in (2), γ(·) is to be defined by
the designer, and n, m, p ∈ N.

The general form of (4)–(5) is typical of Kalman filters or Luenberger-type
observers ([19, 20]), wherein φ (·) plays the role of predictor (predicting expected
change in state for the measured stimuli), and γ(·) that of corrector. The pre-
dicted state is used in (5) to produce a predicted output, which is then compared
to the measured output. The resulting error ey(t), t ⩾ 0, is used to correct the
prediction. A non-trivial difference in the approach considered here is the inclu-
sion of x̂c(t) in the corrective term, which allows to account for the outcome of
the classification procedure within the proposed observation framework.

As alluded to previously, accuracy of the dynamics model (that is, how closely
φ(·) captures f(·)) is of crucial importance, and viability of the overall approach
hinges on it. More specifically, development of observation tools commonly rely
on strong model knowledge assumption. To such an extent that, relaxing such
assumptions typically undermines achievement of any type of observation guar-
antees (see the discussion in [21, 22]). As pertains to the considered problem
however, the existence of some measure of uncertainty on the system dynamics
(1) is likely inescapable. Processes involved (of emotional response) are com-
monly described in cognitive psychology, but in qualitative terms. Conversely,
quantitative representations or closed-form models which may be of direct use
in (1) are not common in the literature. Accordingly, we will follow a model-
ing/identification process to develop sufficiently faithful models of the considered
dynamics. Specifically, qualitative considerations developed in the cognitive psy-
chology literature will be relied upon to define a general frame for the considered
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state-space model. A range of practical experiments will be conducted to collect
representative data, considering a sufficiently wide range of subjects. This data
will be relied upon to adjust the aforementioned general model in such a manner
that it reflects its contents. A wide range of techniques may be considered to that
end, including for instance indirect adaptive approaches ([23]) supported by a
Q–modification scheme ([24]). Alternatively, one may choose to rely on Gaussian
regression ([25]) to adjust form of the model to reflect collected data, though such
an approach requires transformation of the time-differential relation in (1) to an
algebraic one. This is routinely achieved using, for instance, nonlinear swapping
(as discussed in [26]). Such techniques typically rely on a nonlinear parametrisa-
tion of uncertainty, a common assumption that often proves straightforward to
satisfy. In particular, should one approximate for instance the right-hand-side of
(1) using a linear combination of unknown (uncertain) parameters and known
nonlinear functions of the state and the input, the residual error, correspond-
ing to the difference between this estimate (assuming ideal parameters) and the
actual value of f(·), may also be represented (up to arbitrary accuracy) using
such a linear parameterisation, provided that f(·) is a continuous function of
its arguments. This directly follows from Weierstrass’ approximation theorem
([27]), see for illustration the discussion in [28].

5 Conclusion
The approach explored in the SUaaVE project aims at promoting acceptance of
vehicular automation by placing the human factor at the center of technological
developments. This is pursued by affording special attention to CAV users’ emo-
tional response to the technology. In this perspective, a number of approaches
are followed to develop robustly reliable real-time estimators, allowing to assess
passengers’ emotional response at run-time. This is achieved by using a number
of classifiers, but also dynamic observers. Building upon these developments, the
work within the project is currently oriented towards exploiting the assessed in-
formation to, in real-time, adjust the vehicle’s on-road behavior in such a manner
that passengers’ emotional state is positively affected.
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